Lab no 08: Counter and Timer

The Purpose of this Lab is to: learn about 555-Timer, BCD Decade Counter, decoder, seven-segment display, and Proteus Simulator. In this lab, we will simulate a circuit that counts and displays numbers on the seven-segment display. Then your task is to implement the circuit and test it on the breadboard.

Required Components

- Breadboard.
- 5V battery.
- Jumper wires.
- 330-ohm Resistor.
- 50k-ohm Resistor.
- 44k-ohm Resistor.
- 10nF (nano-farad) Capacitor
- 10uF (micro-farad) Capacitor.
- Led.
- 555 Timer.
- BCD Decade Counter IC 74LS90.
- Digital 7 segments display anode.
- Digital 7 segments decoder IC 7447 .

Parts:

1. Introduction to 555 Timer, Counter, decoder, and seven-segment display.
2. Simulate the counter circuit using 555 Timer, Counter, decoder, and seven-segment display on Proteus.

Part 1: Introduction to 555 Timer, Counter, decoder, and seven-

segment display.

> $\mathbf{5 5 5}$ Timer IC is an integrated circuit used in a variety of timer, Time delay generation, Sequential timing, pulse generation, and oscillator applications. The 555 Timer may be used as a clock generator.
The 555 Timer has two operating modes:

- Monostable or one-shot Timer

Monostable is a mode with only one stable state. When triggered, it goes to its unstable state for a predetermined time period, then returns to its stable state. Where the pulse width is determined by R 1 and C 1 . Approximately $\mathrm{tw}=1.1^{*} \mathrm{R} 1^{*} \mathrm{C} 1$ as shown in Figure 1.

Figure 1: Monostable or one-shot Timer.

- Astable Timer

An astable is a device that has no stable states. The resulting output is typically a square wave that is used as a clock signal in many types of sequential logic circuits as shown in Figure 2.

Figure 2: A stable Timer.
> BCD Decade Counter A binary coded decimal (BCD) is a serial digital counter that counts in a sequence of ten digits (from 0:9) and then returns back to zero after the count of nine. When the Decade counter is at REST, the count is equal to 0000. A decade Obviously to count up to a binary value of nine, the counter must have at least four flip-flops within its chain to represent each decimal digit as shown in Figure 3.

Figure 3: BCD Decade Counter FSM.

Note: Refer to Lab 7 to revise the BCD \& Seven-Segment Display.

Part 2:- Simulate the counter circuit using 555 Timer, Counter, decoder, and seven-segment display on Proteus.

$>$ Timer 555 NE555 is a Timer that can be found in many electronic devices. It is a highly stable integrated circuit that can produce accurate time delays and oscillations as shown in Figure 4. The pinout and its functions are discussed below.

Figure 4: NE555N IC \& Pin Configuration.
> BCD Decade Counter 74LS90 is a MOD-10-decade counter that generates a BCD output code as shown in figure 5. The pinout and its functions are discussed below.

Figure 5:- 74LS90 IC \& Pin Configuration.

Schematic for Decade Counter and the Seven-Segments Decoder.

Figure 6 shows the schematic of Counter 74LS90, where QA, QB, QC, and QD are the outputs as shown in the truthtable. Once a clock is trigged, it counts up.

74LS90 BCD Decade Counter

Truth Table				
count	Q_{D}	Q_{C}	Q_{B}	Q_{A}
0 [start $]$	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
$10\left[\begin{array}{ccc}\text { new } \\ \text { cycle }\end{array}\right]$	0	0	0	0

Figure 6: Schematic of 74LS90 BCD Counter and Truth Table.
Figure 7 shows the schematic of the seven-segment decoder and sevensegments display, where A, B, C, and D are the inputs. Once the binary inputs (A, B, C, D) are set, the display shows the equivalent decimal number of the binary code.

Figure 7: Schematic of 74LS47 BCD to 7-segment Decoder.

Figure 8 shows the schematic of the integration of the Counter 74LS90 and the seven-segment decoder and seven-segment display, where the counter outputs (QA, QB, QC, QD) are connected to the decoder inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .

Figure 8: Schematic of 74LS90 BCD Counter to 7-segment.

Steps to simulate the counter circuit In Proteus.

- Open Proteus Software.

Faculty of Computers and Artificial Intelligence
CS221: Logic Design

- Open schematic capture

PROTEUS DEGIGN EUTE B.D

- Open pick devices from devices

Faculty of Computers and Artificial Intelligence
CS221: Logic Design

First: Generate the clock using the Timer-555 Circuit.

- Search for IC 555 Timer and Add to the schematic.
- Add from pick device resistors (44 k and 50 k (kilo ohm)), capacitor 10 nf (nano-farad) and 10 uf (microfarad)

- Add power and ground from terminal mode

Faculty of Computers and Artificial Intelligence
CS221: Logic Design

- Connect (Pin 2) to (Pin 6) and Connect (Pin 4) to (Pin 8)

- Connect (Pin 1) to (Ground (-)) and Connect (Pin 8) to (power (+))

Faculty of Computers and Artificial Intelligence
CS221: Logic Design

- Connect capacitor c1 10 nf to pin (5) and ground Connect capacitor c2 10 uf to pin (6) and ground

- Connect resistor R1 44 k to pin (7) and power Connect resistor R2 50 k to pin (6) and pin (7)

Faculty of Computers and Artificial Intelligence
CS221: Logic Design

Second: Connect the Decade Counter.

- Add from pick device ic 74LS90 and ground from terminal mode

- Connect (Pin 1) to (Pin 12)

Connect (Pin 2) , (Pin 3) , (Pin 6) and (Pin 7) to ground

Faculty of Computers and Artificial Intelligence
CS221: Logic Design

- Connect (Pin 3) in Timer 555 to Pin (14) in counter (The Clock)

Third: Connect the Seven-Segment Decoder and Display

- Add from pick device IC 7447

Faculty of Computers and Artificial Intelligence
CS221: Logic Design

- Connect Pin 12 in counter to Pin 7 in Decoder
- Connect Pin 9 in counter to Pin 1 in Decoder
- Connect Pin 8 in counter to Pin 2 in Decoder
- Connect Pin 11 in counter to Pin 6 in Decoder
- Connect LT (Pin 3) and BI/RBO (Pin 4) and RBI (Pin 5) to the 5V power

- Add from pick devise resistors 330 ohms and anode 7 -segment

Faculty of Computers and Artificial Intelligence
CS221: Logic Design

- Connect Outputs 'QA' to 'QG' from 74Is47 to the resistors R3 to R9.
- Connect resistors (R3 to R9) to ('a' to ' g ') in the 7-segment display
- Connect the common pin in the digital 7 segments to the power pin.

- Click on run simulation

Finally: you can notice the counting up on the seven-segment display every second

Task: Hardware Connections.
Now, it is your turn. On the breadboard, Connect the above circuit. Review the schematic in Figure.8. Then Test the function of 7490 IC.

Note

- Proteus Source. Link
- Install Proteus Steps Link
- Timer and Counter in Proteus video Lab Link

