

Lab no 08: Counter and Timer

The Purpose of this Lab is to: learn about 555-Timer, BCD Decade Counter, decoder, seven-segment display, and Proteus Simulator.

In this lab, we will simulate a circuit that counts and displays numbers on the seven-segment display. Then your task is to implement the circuit and test it on the breadboard.

Required Components

- Breadboard.
- 5V battery.
- Jumper wires.
- 330-ohm Resistor.
- 50k-ohm Resistor.
- 44k-ohm Resistor.
- 10nF (nano-farad) Capacitor
- 10uF (micro-farad) Capacitor.
- Led.
- 555 Timer.
- BCD Decade Counter IC 74LS90.
- Digital 7 segments display anode.
- Digital 7 segments decoder IC 7447.

Parts:

1. Introduction to 555 Timer, Counter, decoder, and seven-segment display.

2. Simulate the counter circuit using 555 Timer, Counter, decoder, and seven-segment display on Proteus.

Part 1: Introduction to 555 Timer, Counter, decoder, and sevensegment display.

<u>555 Timer</u> IC is an integrated circuit used in a variety of timer, Time delay generation, Sequential timing, pulse generation, and oscillator applications. The 555 Timer may be used as a clock generator. The 555 Timer has two operating modes:

Monostable or one-shot Timer

Monostable is a mode with only one stable state. When triggered, it goes to its unstable state for a predetermined time period, then returns to its stable state. Where the pulse width is determined by R1 and C1. Approximately tw = $1.1 \times R1 \times C1$ as shown in Figure 1.

Figure 1: Monostable or one-shot Timer.

<u>Astable Timer</u>

An astable is a device that has no stable states. The resulting output is typically a square wave that is used as a clock signal in many types of sequential logic circuits as shown in Figure 2.

Faculty of Computers and Artificial Intelligence

CS221: Logic Design

Figure 2: A stable Timer.

BCD Decade Counter A binary coded decimal (BCD) is a serial digital counter that counts in a sequence of ten digits (from 0: 9) and then returns back to zero after the count of nine. When the Decade counter is at <u>REST</u>, the count is equal to 0000. A decade Obviously to count up to a binary value of nine, the counter must have at least four flip-flops within its chain to represent each decimal digit as shown in Figure 3.

Figure 3: BCD Decade Counter FSM.

Note: Refer to Lab 7 to revise the BCD & Seven-Segment Display.

Part 2:- Simulate the counter circuit using 555 Timer, Counter, decoder, and seven-segment display on Proteus.

Timer 555 NE555 is a Timer that can be found in many electronic devices. It is a highly stable integrated circuit that can produce accurate time delays and oscillations as shown in Figure 4. The pinout and its functions are discussed below.

Figure 4: NE555N IC & Pin Configuration.

BCD Decade Counter 74LS90 is a MOD-10-decade counter that generates a BCD output code as shown in figure 5. The pinout and its functions are discussed below.

Figure 5:- 74LS90 IC & Pin Configuration.

Schematic for Decade Counter and the Seven-Segments Decoder.

Figure 6 shows the schematic of Counter 74LS90, where QA, QB, QC, and QD are the outputs as shown in the truthtable. Once a clock is trigged, it counts up.

74LS90 BCD Decade Counter

Figure 6: Schematic of 74LS90 BCD Counter and Truth Table.

Figure 7 shows the schematic of the seven-segment decoder and sevensegments display, where A, B, C, and D are the inputs. Once the binary inputs (A, B, C, D) are set, the display shows the equivalent decimal number of the binary code.

Figure 7: Schematic of 74LS47 BCD to 7-segment Decoder.

Figure 8 shows the schematic of the integration of the Counter 74LS90 and the seven-segment decoder and seven-segment display, where the counter outputs (QA, QB, QC, QD) are connected to the decoder inputs A, B, C, and D.

Figure 8: Schematic of 74LS90 BCD Counter to 7-segment.

Steps to simulate the counter circuit In Proteus.

UNTITLED - Proteus 8 Professional - Horr	e Page				- 0 ×		
File System Help							
) 😂 🗐 🥮 🖾 🚾 🖛 🛱 🗊 B 💳 🔗							
Home Page ×							
💥 PROTE	US DESIGN SUITE 8	.0					
Getting Started	Start						
Schematic Capture	Open Project New Project Import Legacy Des	ign Open Sample					
PCB Layout	PCB Layout Recent Projects						
Simulation Migration Guida	D-18FCAHLogic design/logic 2023/bcd decoder/segment.pdspri						
	C:\Users\lenovo\Desktop\comparator.pdsprj						
······ []?]?							
Help	······································		ad farmana (a	۵			
M Help Home	News						
Schematic Capture PCB Layout	New Version Available						
Simulation	Description	Release Date	USC Valid		- 1		
	Proteus Professional 8.15 SP1 [8.15.34318]	14/11/2022	Yes	Download			
	Proteus Professional 8.14 SP3 [8.14.33469]	22/07/2022	Yes	Download			

• **<u>Open</u>** Proteus Software.

<u>Open</u> schem	atic capture					
UNTITEC - Proteus & Professional - Hom File System to p 日 合 調 第 合 型 雪 4 祭 夏 日 一 ⑦	e Page			-		
PROTE	US DESIGN SUITE 8.	.0				
Getting Started	Start					
<u>Schematic Capture</u> <u>PCB Layout</u> <u>Simulation</u> <u>Migration Guide</u>	Open Project New Project Import Legacy Design Open Sample Recent Projects D:\BFCAI\Logic design\logic 2023\bcd decoder7segment.pdsprj C:\Users\lenovo\Desktop\comparator.pdsprj					
Help Help Home Schematic Capture	News New Version Available					
PCB Layout Simulation	Description	Release Date	USC Valid			
	Proteus Professional 8.15 SP1 [8.15.34318]	14/11/2022	Yes	Download		

• **<u>Open</u>** pick devices from devices

🚹 Home Page 🗴 🔟 Schematic Cepture 🗴						
NI						
DEVICES						
-						
6						
C						
1						
	••••••••••••••••••••••••••••••••••••••					
4						
•						

First: Generate the clock using the Timer-555 Circuit.

- **<u>Search</u>** for IC 555 Timer and <u>Add</u> to the schematic.
- <u>Add</u> from pick device resistors (44 k and 50 k (kilo ohm)), capacitor 10 nf (nano-farad) and 10 uf (microfarad)

• Add power and ground from terminal mode

• Connect (Pin 2) to (Pin 6) and Connect (Pin 4) to (Pin 8)

• <u>Connect</u> (Pin 1) to (Ground (-)) and <u>Connect</u> (Pin 8) to (power (+))

<u>Connect</u> capacitor c1 10 nf to pin (5) and ground
 <u>Connect</u> capacitor c2 10 uf to pin (6) and ground

<u>Connect</u> resistor R1 44 k to pin (7) and power
 <u>Connect</u> resistor R2 50 k to pin (6) and pin (7)

Second: Connect the Decade Counter.

• Add from pick device ic 74LS90 and ground from terminal mode

<u>Connect</u> (Pin 1) to (Pin 12)
 <u>Connect</u> (Pin 2), (Pin 3), (Pin 6) and (Pin 7) to ground

• **Connect** (Pin 3) in Timer 555 to Pin (14) in counter (The Clock)

Third: Connect the Seven-Segment Decoder and Display

• Add from pick device IC 7447

- Connect Pin 12 in counter to Pin 7 in Decoder
- Connect Pin 9 in counter to Pin 1 in Decoder
- **Connect** Pin 8 in counter to Pin 2 in Decoder
- **<u>Connect</u>** Pin 11 in counter to Pin 6 in Decoder
- <u>Connect</u> LT (Pin 3) and BI/RBO (Pin 4) and RBI (Pin 5) to the 5V power

• Add from pick devise resistors 330 ohms and anode 7-segment

- **Connect** Outputs 'QA' to 'QG' from 74Is47 to the resistors R3 to R9.
- **Connect** resistors (R3 to R9) to ('a' to 'g') in the 7-segment display
- **Connect** the common pin in the digital 7 segments to the power pin.

• **<u>Click</u>** on run simulation

Finally: you can notice the counting up on the seven-segment display every second

Task: Hardware Connections.

Now, it is your turn. On the breadboard, <u>Connect</u> the above circuit. Review the schematic in Figure.8. Then <u>Test</u> the function of 7490 IC.

Note

- Proteus Source. Link
- Install Proteus Steps Link
- Timer and Counter in Proteus video Lab Link